70 research outputs found

    Loop Restricted Existential Rules and First-order Rewritability for Query Answering

    Full text link
    In ontology-based data access (OBDA), the classical database is enhanced with an ontology in the form of logical assertions generating new intensional knowledge. A powerful form of such logical assertions is the tuple-generating dependencies (TGDs), also called existential rules, where Horn rules are extended by allowing existential quantifiers to appear in the rule heads. In this paper we introduce a new language called loop restricted (LR) TGDs (existential rules), which are TGDs with certain restrictions on the loops embedded in the underlying rule set. We study the complexity of this new language. We show that the conjunctive query answering (CQA) under the LR TGDs is decid- able. In particular, we prove that this language satisfies the so-called bounded derivation-depth prop- erty (BDDP), which implies that the CQA is first-order rewritable, and its data complexity is in AC0 . We also prove that the combined complexity of the CQA is EXPTIME complete, while the language membership is PSPACE complete. Then we extend the LR TGDs language to the generalised loop restricted (GLR) TGDs language, and prove that this class of TGDs still remains to be first-order rewritable and properly contains most of other first-order rewritable TGDs classes discovered in the literature so far.Comment: Full paper version of extended abstrac

    A gate-variable spin current demultiplexer based on graphene

    Full text link
    Spintronics, which utilizes spin as information carrier, is a promising solution for nonvolatile memory and low-power computing in the post-Moore era. An important challenge is to realize long distance spin transport, together with efficient manipulation of spin current for novel logic-processing applications. Here, we describe a gate-variable spin current demultiplexer (GSDM) based on graphene, serving as a fundamental building block of reconfigurable spin current logic circuits. The concept relies on electrical gating of carrier density dependent conductivity and spin diffusion length in graphene. As a demo, GSDM is realized for both single-layer and bilayer graphene. The distribution and propagation of spin current in the two branches of GSDM depend on spin relaxation characteristics of graphene. Compared with Elliot-Yafet spin relaxation mechanism, D'yakonov-Perel mechanism results in more appreciable gate-tuning performance. These unique features of GSDM would give rise to abundant spin logic applications, such as on-chip spin current modulators and reconfigurable spin logic circuits.Comment: 18 pages,3 figures,1 tabl

    RMAC: A reliable multicast MAC protocol for wireless ad hoc networks

    No full text
    This paper presents a new MAC protocol called RMAC that supports reliable multicast for wireless ad hoc networks. By utilizing the busy tone mechanism to realize multicast reliability, RMAC has the following three novelties: (1) it uses a variable-length control frame to stipulate an order for the receivers to respond, such that the problem of feedback collision is solved; (2) it extends the traditional usage of busy tone for preventing data frame collisions into the multicast scenario; and (3) it introduces a new usage of busy tone for acknowledging data frames. In addition, we also generalize RMAC into a comprehensive MAC protocol that provides both reliable and unreliable services for all the three modes of communications: unicast, multicast, and broadcast. Our evaluation shows that RMAC achieves a high degree of reliability with very limited overhead. We also compare RMAC with other reliable multicast MAC protocols, showing that RMAC not only provides higher reliability but also involves lower cost. Key Words: wireless ad hoc networks, MAC protocol, reliable multicast, busy tone
    corecore